A preconditioning proximal Newton method for nondifferentiable convex optimization

نویسندگان

  • Liqun Qi
  • Xiaojun Chen
چکیده

We propose a proximal Newton method for solving nondiieren-tiable convex optimization. This method combines the generalized Newton method with Rockafellar's proximal point algorithm. At each step, the proximal point is found approximately and the regu-larization matrix is preconditioned to overcome inexactness of this approximation. We show that such a preconditioning is possible within some accuracy and the second-order diierentiability properties of the Moreau-Yosida regularization are invariant with respect to this preconditioning. Based upon these, superlinear convergence is established under a semismoothness condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal quasi-Newton methods for nondifferentiable convex optimization

This paper proposes an implementable proximal quasi-Newton method for minimizing a nondifferentiable convex function f in <n . The method is based on Rockafellar’s proximal point algorithm and a cutting-plane technique. At each step, we use an approximate proximal point p(xk) of xk to define a vk ∈ ∂ k f(p(xk))with k ≤ α‖vk‖,where α is a constant. The method monitors the reduction in the value ...

متن کامل

Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization

In this paper we provide implementable methods for solving nondifferentiable convex optimization problems. A typical method minimizes an approximate Moreau–Yosida regularization using a quasi-Newton technique with inexact function and gradient values which are generated by a finite inner bundle algorithm. For a BFGS bundle-type method global and superlinear convergence results for the outer ite...

متن کامل

Proximal Quasi-Newton Methods for Nondifferentiable Convex Optimization

Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in R. 23 superlinear convergent algorithm for minimizing the Moreau-Yosida regularization F. However, this algorithm makes use of the generalized Jacobian of F, instead of matrices B k generated by a quasi-Newton formula. Moreover, the line search is performed on the function F , rath...

متن کامل

Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints

This paper studies the convex multiobjective optimization problem with vanishing constraints‎. ‎We introduce a new constraint qualification for these problems‎, ‎and then a necessary optimality condition for properly efficient solutions is presented‎. ‎Finally by imposing some assumptions‎, ‎we show that our necessary condition is also sufficient for proper efficiency‎. ‎Our results are formula...

متن کامل

Convergence analysis of inexact proximal Newton-type methods

We study inexact proximal Newton-type methods to solve convex optimization problems in composite form: minimize x∈Rn f(x) := g(x) + h(x), where g is convex and continuously differentiable and h : R → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated efficiently. Proximal Newton-type methods require the solution of subproblems to obtain the search ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 1996